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ABSTRACT 

 

Since 1980 surface modeling has been used in industrial design, CAD and entertainment 

to create and represent complex forms. Even with this comparatively long history of 

development, challenges remain in free-form surface modeling. One such challenge is 

building surface creation and editing techniques that effectively balance the need for local 

control with the need to control the overall global shape, or sweep of the surface. This 

dissertation presents a multiresolution approach to the creation of surfaces that allows a 

designer to more easily manage this balance between local and global control. The 

techniques presented in this dissertation utilize a wavelet decomposition of B-spline curves 

and surfaces to allow a designer to easily develop the basic shape using lower level 

representations, and then seamlessly switch to higher level representations to achieve fine 

control over local features. The algorithms described in the dissertation are implemented in 

an interactive software system that is used to demonstrate their effectiveness in comparison 

to existing methods.  
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CHAPTER 1.  INTRODUCTION 

 

A necessary feature of a modern CAD system is the facility for free-form surface 

modeling, supplying users with tools and techniques for interactive free-form surface 

creation and editing. These surfaces are typically defined by linear combinations of 

parametric functions, such as B-splines that spatially blend a set of control points. Free-form 

surface modeling is accomplished by defining and manipulating these sets of control points. 

Often the interfaces for creating these control point nets clearly reflect the underlying 

mathematics of the modeling methods. Although such interfaces are the most straightforward 

to the program and are often the easiest and fastest way from a mathematical point of view, 

they are not necessarily the most intuitive for a user.  

A central tradeoff involved in crafting intuitive surface creation and editing interfaces 

involves balancing the desire to easily control overall global shape, or sweep of the curve or 

surface with the need to define localized detail. Since the local property of B-splines limits 

the balance between local and overall sweep control, free-from surface modeling using spline 

based surfaces can become extremely tedious and in some cases even impossible. 

Multiresolution analysis techniques have recently emerged as a fundamental paradigm to 

resolve this conflict, primarily because they allow a function to be described in terms of a 

coarse overall shape augmented by details that range from broad to narrow.  This more 

flexible representation brings with it other useful properties such as progressively refinable 

reconstruction, efficient curve and surface compression, error bounds, and efficient 

computational algorithms [1].  
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This dissertation presents a new multiresolution approach to the creation of certain 

classes of free-form curves and surfaces that allows a designer to more easily manage the 

balance between local and global control. The techniques presented in this dissertation utilize 

a wavelet decomposition of a B-spline curve or surface to allow a designer to easily develop 

the basic shape, and then seamlessly switch to higher levels of detail to add additional 

definition. A surfacing kernel based on these wavelet-based B-splines is used as the basis for 

developing 3D space curve and free-form surface modeling techniques. The algorithms 

described in the dissertation are implemented in a software system that is used to illustrate 

their utility and compare them to existing methods.  

1.1  Literature Review 

B-splines have become the de facto industry standard for geometric modeling, graphics, 

and graphical information exchange. They provide a unified mathematical representation for 

free-form curves, surfaces, and standard analytic shapes. The excellent mathematical 

properties and advanced geometric algorithms of B-splines have contributed to the enormous 

popularity of their representations in geometric modeling systems [2, 3, 4]. In recent years, 

much work has been focused on methods that allow the user to effectively manage the 

balance between local and global control of B-splines. 

The transformation deformation technique of Barr [5] was a step in this direction. The 

transformations Barr defined included stretching, bending, twisting, and tapering operators. 

The shaping tools were designed by Cobb [6] specifically for B-splines surfaces. They use a 

method to move control points in groups, and then apply linear and nonlinear transformations 

to them. While their approach does improve the user’s ability to control the global shape of 
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the surface by allowing the movement of many control points at one time, arbitrary 

deformations are not possible. It is often unclear which control points should be moved to 

achieve particular effects or how transformations will affect the object.  

The free-form deformation (FFD) for global editing, developed by Sederberg and Parry 

[7], represented an important step forward, allowing objects to be deformed in a more 

controlled and meaningful way. In the FFD method, the geometric model is embedded in a 

parallelepiped lattice of control points defining a volume in which the surface control points 

are embedded. The deformations of the volume lattice are then mapped to corresponding 

deformations of the embedded surface control points, thus affecting smooth global shape 

manipulation of the surface. Coquillart [8] later extended this method to include non-

parallelepiped lattices. Instead of starting with the FFD’s parallelepiped lattice, the user 

defines the shape of the initial lattice to induce the intended deformation. The extended FFD 

overcame some construction and deformation limitations of the original FFD. However, the 

user must know the deformation shape before starting to model, and the interface still 

directly reflects the underlying mathematics of the modeling method.   

Hierarchical B-splines (HBS) as a basis for multiresolution modeling were presented in 

original work on hierarchical editing by Forsey and Bartels [9]. The basic idea behind HBS is 

to add finer B-spline patches onto an existing coarse B-spline patch to localize the effect of 

refinement. The finer patches are created by using hierarchically controlled subdivisions, and 

form an overrepresentation for the original surface. Forsey and Bartels observed that the 

refinement frames of reference fixed upon the surface being edited are essential to achieve 

correct editing. Using this method, one can build very complicated shapes; however the 

method does not provide a rigorous analysis framework. Forsey and Wong [10] extended 
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HBS to an analysis algorithm using weighted least squares, but it remains too 

computationally expensive to run interactively. 

Hierarchical triangle splines [11] extended HBS to smooth surfaces of arbitrary topology. 

Based on the triangular interpolation scheme [12], this method enables hierarchical editing 

by interpolating the vertices of a hierarchy of locally refined meshes. Each local surface 

refinement replaces a set of coarse surface patches by a set of finer surface patches while 

maintaining both overall tangent continuity and geometric shape. This method can deal with 

any triangular mesh without restrictions of topology and geometry. Since the user decides 

where to add a finer surface patch, the overrepresentation is not unique. The choices a user 

makes in adding these refinement areas introduce significant constraints on further model 

development. Subsequent editing of a model is strongly dependent on the model’s editing 

history, and this history can grow quite complex. The dependence on editing history runs 

contrary to the desire to be able to easily edit existing models.  

Wavelets provide a framework to rigorously define a multiresolution analysis, akin to 

those defined by HBS, but with a fast, general analysis algorithm. Finkelstein and Salesin 

[13] used a wavelet based decomposition to describe a multiresolution B-spline curve 

representation. Their representation does support interactive curve editing, such as overall 

shape editing, fractional-level editing and detail editing. In their method, detail editing is 

accomplished by replacing one set of detail coefficients with a new set, allowing a user to 

edit the detailed characteristics of the curve without affecting its overall sweep. Since detail 

maintains its orientation as the sweep is changed, a local parameterization of detail can be 

used to orient detail with respect to coarser level tangent/normal frames. While this detail 

editing can be performed interactively, it does not support direct manipulation of the curve’s 
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detailed shape as a designer would like, and as such is unsuitable as a general purpose shape 

editing tool. Gortler and Cohen [14] point out that directly manipulating wavelet 

representations of detail does not produce an intuitive interface, due to the non-intuitive 

shape of the underlying wavelet functions. Instead of the smooth shape changes a modeler 

would like to see in geometric space, manipulations of the wavelet coefficients results in 

shape changes with “extra wiggles”. 

Lousbery [15] set up the connection between wavelets and subdivision, and used it to 

define multiple levels of resolution. The original constructions were directly applied to 

piecewise linear subdivision, but smoother constructions have also been identified [16, 17, 

18]. Lousbery explored the possibility of multiresolution editing based on subdivision 

wavelets. This kind of editing clearly reflects the underlying mathematics of the modeling 

method, but it could not provide the user with an intuitive and interactive interface. The 

multiresolution representation is restricted to polygonal meshes with subdivision connectivity 

at the finest level. Eck [19] presented a method for overcoming this shortcoming and could 

convert any arbitrary mesh into multiresolution form. 

Constraint-based multiresolution editing techniques have proved to be helpful for 

geometric modeling [20, 21]. Elber [22] developed a scheme that incorporates linear 

constraints into a multiresolution editing environment, allowing the user to perform 

multiresolution editing for non-uniform B-spline curves, while satisfying positional, 

tangential, and orthogonal constraints on the curves. He also showed that area preservation 

can be viewed as a linear constraint and can be reformulated into the multiresolution 

framework. Hahmann and Sauvage [23] explored the area preservation problem in a rigorous 

analysis framework based on wavelets. In their method, area preservation is expressed as a 
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bilinear form of the coarse control points and wavelet coefficients through all levels of 

resolution, and multiresolution deformation with the area constraint is computed through an 

optimization process. To enable the efficient computation of the area in the wavelet 

decomposition form, they built their multiresolution editing framework based on uniform B-

splines. Sauvage [24] generalized B-spline area preservation to three-dimensional B-spline 

surfaces with volume preservation. Multiresolution deformations for both uniform and non-

uniform B-splines are addressed in his framework. Although a minimization process is 

required to develop the solutions, this method can support the interactive detail-preserving 

editing of B-spline surfaces with volume constraint. Another constraint of high interest is arc-

length preservation of the curves. Sauvage and Hahmann [25] described arc-length 

preservation as a non-linear constraint, and integrated it into a multiresolution editing system. 

They later extended it into a wrinkling tool for soft tissue deformation [26]. Obviously, 

constraint-based multiresolution editing techniques can offer additional and finer control over 

the deformations of the curves and surfaces. However, since the deformation at a coarse level 

is computed from its underlying optimization mathematics, the ambiguity of the deformation 

can not provide the user with an intuitive design view.  

Previous work has shown that multiresolution techniques can help balance the need for 

targeted, local control of surface detail with the need to control the overall shape of the 

surface. While wavelets have been considered as a basis for multiresolution modeling, a 

suitable method has so far not been identified. The contribution of the research presented in 

this dissertation is to demonstrate an effective method for applying a wavelet based 

multiresolution analysis as the basis for an interactive curve and surface creation and editing 

mechanism.  
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1.2  Dissertation Overview 

This dissertation presents a multiresolution approach to the creation of certain classes of 

free-form curves and surfaces that allows a designer to more easily manage the balance 

between local and global control.  

1.2.1  Outline 

Before going into the details of multiresolution analysis for B-splines, it is first necessary 

to present background information. Chapter 2 introduces the mathematical framework of 

multiresolution analysis and then discusses three different classes of wavelet bases: 

orthogonal wavelets, semiorthogonal wavelets, and biorthogonal wavelets. 

Chapter 3 explains how to construct B-spline wavelets, one of the more important 

wavelets used in hierarchical representation of free-form curves and surfaces. 

The primary contribution of this dissertation is presented in Chapter 4, which discusses 

the details of multiresolution editing techniques for B-spline curves and surfaces. This 

includes: (1) multiresolution editing for B-spline space curves; (2) multiresolution editing for 

B-spline surfaces. 

Applications of multiresolution surface editing, including product design and styling, are 

discussed in Chapter 5. 

Finally, Chapter 6 summarizes this work and suggests interesting areas of future research 

in B-spline wavelets, including applications that have not yet been made concrete.  

1.2.2  Contributions 

The specific contributions for the research include: 
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• Designing and developing an intuitive and convenient editing framework for B-spline 

modeling, which uses the connection between B-spline wavelets and subdivision to 

define different levels of resolution. Based on Finkelstein and Salesin’s earlier work, 

our approach overcomes the undesirable detail editing characteristics inherent in 

their formulation. 

• Extension of this one-dimensional multiresolution editing technique to two-

dimensional situations. This extension introduces a multiresolution editing technique 

for B-spline surface modeling. 

• Unification of the multiresolution curve and surface editing techniques. During the 

modeling process, B-spline geometry construction is broken into several steps. Each 

of these steps has its own multiresolution representation, enabling design-specific 

requirements to be met.  

• Implementation of these algorithms in a software system that can provide interactive 

performance on commodity hardware. Since wavelet based curves and surfaces can 

be decomposed and reconstructed in linear time, the design of dynamic data 

structures and algorithms can make manipulation fast enough to maintain 

interactivity. 
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CHAPTER 2.  MULTIRESOLUTION ANALYSIS BASED ON 

WAVELETS 

 

Wavelets are a mathematical tool for hierarchically decomposing functions [27]. 

Multiresolution analysis based on wavelets can help balance the need for targeted, local 

control of detail with the need to control the overall shape of the function. In this section, the 

mathematical theory of wavelets and multiresolution analysis is presented, as well as 

methods to combine them together to develop a rigorous analysis framework. 

2.1  Haar: The Simplest Wavelet Basis 

2.1.1  The One-dimensional Haar Wavelet Transform 

To illustrate how wavelets work, the simplest wavelets – Haar wavelets are first 

introduced. Suppose a sequence of numbers is given, having the following values: 

(7  5  2  6) 

The sequence can be represented in a wavelet transform using the Haar basis. First, the 

numbers are averaged in a pairwise manner, and a lower-resolution representation is obtained 

with the result as follows: 

(6 4) 

Clearly, this sequence has lost some information from the initial one. To be able to 

recover the initial sequence, some “detail coefficients” need to be defined and used to capture 

the missing information. In this example, the first detail coefficient can be taken as 1 and the 

second one as -2, so the initial sequence can be recovered from the following operations: 

6 + 1 = 7 
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6 – 1 = 5 

4 + (–2) = 2 

4 – (–2) = 6 

Thus the initial sequence (7 5 2 6) can be represented as (6 4 1 -2) without loss of 

information. The numbers (6 4) are the coarse values which represent a low-resolution 

representation, and the numbers (1, -2) are the detail coefficients which capture the missing 

information. The averaging decomposition can be repeated recursively. The further 

decomposition from the sequence (6 4 1 -2) yields the new sequence (5 1 1 -2). Now the 

number 5 is the single value representing the overall average of the original sequence, and 

the numbers (1 1 -2) are the detail coefficients in order of increasing resolution. The process 

that repeats the averaging decomposition recursively is called the Haar wavelet 

decomposition, and new sequence (5 1 1 -2) is the Haar wavelet transform of the initial 

sequence (7 5 2 6). 

2.1.2  One-dimensional Haar Basis Functions 

For piecewise constant functions, consider the half-open interval [0, 1). A one number 

sequence is just a function that is constant over the interval [0, 1). 0
V  is defined as the vector 

space of all such functions. A two number sequence has two constant pieces over the interval 

[0, 1/2) and [1/2, 1). 1
V  is denoted as the space containing all these functions. If this is 

continued further, the space j
V  will include all piecewise constant functions in the interval 

[0, 1) with constant pieces over each of j2  subintervals. Note that a piecewise constant 

function in the space j
V  can always be described as a pair of piecewise constant functions in 

the space 1+j
V . Thus, the vector spaces j

V  are nested, and can be expressed as: 
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L⊂⊂⊂ 210
VVV  

The basis functions of the vector spaces j
V  are called scaling functions. A basis for the 

vector space j
V  is the set of scaled and translated “box” functions: 

)2()( ixx
jj

i −= φφ      12,,0 −= ji K  

where 



 <≤

=
otherwise

for
x

0

1x0  1
)(φ  

Figure 2.1 shows the box basis for the space 2
V .  

 

Figure 2.1   The Haar scaling functions for the space 2
V . 

 

The next step in building a multiresolution analysis is to define wavelet spaces. A 

wavelet space j
W  is defined as the orthogonal complement of the space j

V  in the space 

1+j
V . In other words, the wavelet space j

W  is the subspace of the space 1+j
V , and any 

function in the space j
W  is orthogonal to the functions in the space j

V . The basis functions 
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for the space j
W  are called wavelets. The wavelets corresponding to the box scaling 

functions are known as Haar wavelets, and can be specified as    

)2()( ixx
jj

i −=ψψ      12,,0 −= ji K  

where  









<≤−

<≤

=

otherwise

xfor

xfor

x

0

12/1  1

2/10  1

)(ψ  

Figure 2.2 show the two Haar wavelets for the space 1
W . 

 

Figure 2.2  The Haar wavelet functions for the space 1
W . 

 

 

Since the wavelet space j
W  is the orthogonal complement of the space j

V  in the space 

1+j
V , the basis functions of the space j

W , together with the basis functions of the space j
V , 

form a basis for the space 1+j
V . Now, these ideas can be applied to the previous example. 

The initial sequence (7 5 2 6) can be represented as  

)(6)(2)(5)(7)( 2

3

2

2

2

1

2

0 xxxxxf φφφφ +++=  

It can also be represented in  1
V  and 1

W  as 

)()2()(1)(4)(6)( 1

1

1

0

1

1

1

0 xxxxxf ψψφφ −+++=  
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Finally, it can be represented in 0
V , 0

W , and 1
W  as 

)()2()(1)(1)(5)( 1

1

1

0

0

0

0

0 xxxxxf ψψψφ −+++=  

Once again, the sequence (5 1 1 -2) is the Haar wavelet transform of the initial sequence (7 5 

2 6). The original function is represented as the overall average combined with the wavelet 

details. 

2.2  Multiresolution Analysis and Wavelets 

2.2.1  Multiresolution Analysis 

The basic idea behind multiresolution analysis is to decompose a complicated function 

into a simpler, low resolution function which, when combined with a specific detail 

representation, can be used to recover the original function [28, 29]. There are two basic 

ingredients for a multiresolution analysis: an infinite chain of nested vector spaces 

L⊂⊂⊂ 210
VVV  and an inner product gf ,  defined on any pair of functions jVgf ∈, , 

j < ∞  [30]. The basic functions of the space j
V  are called scaling functions. The next step in 

building a multiresolution analysis is to define the wavelet spaces j
W . To envelop a wide 

variety of wavelet constructions, the wavelet spaces j
W  are defined as the complement of 

the space j
V  in the space 1+j

V . Thus, any function in the space 1+j
V  can be expressed 

uniquely as the sum of a low resolution function in the space j
V  and a detail function in the 

space j
W . The basis vectors of the wavelet space j

W  are called wavelets. 

On a bounded domain, the basis of the space j
V  is finite, allowing us to use matrix 

notation, as in Quak and Weyrich [31]. 
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2.2.1.1  Refinement 

Representing scaling functions )(xjΦ  and wavelet functions )(xjΨ  for a given level j  

in a single row matrix: 

)]()([)(
10 xxx

j

m

jj
j −

=Φ φφ L  

)]()([)(
10 xxx

j

n

jj
j −

=Ψ ψψ L  

where j
m  is the dimension of the space j

V  and j
n  the dimension of the space j

W . Because 

the space j
W  is the complement of the space j

V  in the space 1+j
V , the dimensions of these 

spaces satisfy jjj
nmm +=+1 . 

Since the vector space j
V  is nested, it requires that the scaling functions be refinable. 

That is, for all , ,2 ,1 L=j  there exists a constant matrix jP  such that 

                                                    jjj Pxx )()(1 Φ=Φ −                                                 (2.1) 

 

where jP  is a 1−× jj
mm  matrix.  

The wavelet space 1−j
W is by definition the complement of the space 1−j

V  in the space 

j
V , so it is also a subspace of the space j

V . The wavelets )(1 xj−Ψ  can be written as linear 

combinations of the scaling functions )(xjΦ . This means there is a 1−× jj
nm  constant 

matrix jQ  satisfying 

                                                    jjj Qxx )()(1 Φ=Ψ −                                                    (2.2) 

Equations (2.1) and (2.2) can be combined together in block-matrix notation and 

represented as: 

                                                  [ ] [ ]jjjjj QPΦ=ΨΦ −− 11                                               (2.3) 
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2.2.1.2  The filter bank 

Consider a function in some vector space j
V , expressed as a linear combination of the 

scaling function basis )(xjΦ . The coefficients of the function in terms of the basis can be 

written as a column matrix of values Tj

m

jj
jccC ]  [

10 −
= L .  

Suppose a low-resolution version 1−j
C  is desired with fewer coefficients 1−j

m  than has 

j
C . The standard method for creating 1−j

C  is to do some form of linear filtering and down-

sampling on the entries of j
C . This process can be expressed as: 

                                                          jjj
CAC =−1                                                          (2.4) 

where jA  is a jj
mm ×−1  constant matrix. 

Since 1−j
C  contains fewer coefficients, some amount of detail is lost in this filtering 

process. The lost detail can be captured by another matrix equation: 

                                                           jjj
CBD =−1                                                         (2.5) 

where jB  is a jj
mn ×−1  constant matrix. The process of splitting the coefficients j

C  into a 

low-resolution version 1−j
C  and detail 1−jD  is called decomposition. The matrices jA  and 

jB  are called analysis filters. 

The original coefficients j
C  can be reconstructed from its low-resolution version 1−j

C  

and detail 1−jD : 

                                                     11 −− += jjjjj DQCPC                                               (2.6) 

where jP  and jQ  are the same matrices as in equation (2.1) and (2.2), and are called 

synthesis filters. This process of recovering j
C  from 1−j

C  and 1−jD  is called reconstruction. 



www.manaraa.com

16 

 

 

1−j
B  

1
B  

j
B
 

1
A  

j
A

1−j
A  

j
A

j
A  

j
A

The decomposition procedure can be applied recursively to the low-resolution version 

1−j
C . Thus, the original coefficients can be expressed as a hierarchy of lower-resolution 

versions 10  , , −jCC L  and details 10  , , −jDD L , as shown in Figure 2.3. The recursive process 

is known as a filter bank. 

Note that the original coefficients j
C  can be recovered from the sequence 

1100  ,  , , , −jDDDC L . This sequence is called a wavelet transform. Since the total size of the 

transform 1100  ,  , , , −jDDDC L  is the same as that of original version j
C , no extra storage is 

required. 

 

                    j
C   1−j

C  2−j
C  ...  1

C   0
C  

                                               1−jD                    2−jD   ...                   0D                                    

Figure 2.3  The filter bank. 

 

In general, jA  and jB  are formed by satisfying the relation:  

                                                      [ ] j

j

j
jj

B

A
Φ=








ΨΦ −−  11                                                 (2.7) 

Combining equations (2.3) and (2.7) gives 

                                                        [ ] 1
|

−
=







 jj

j

j

QP
B

A
                                                 (2.8) 

where 







j

j

B

A
 and [ ] 1

|
−jj QP  are both square matrices. 
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2.2.2  Orthogonal Wavelet System 

An orthogonal wavelet system is defined as one in which the scaling functions are 

orthogonal to each other, the wavelet functions are orthogonal each other, and each of the 

wavelets is orthogonal to every scaling functions at the coarser level. 

The mathematical representation of orthogonality can be written as: 

                                               and , ,    

0

,

,

lkjallfor

j

l

j

k

lk

j

l

j

k

lk

j

l

j

k

=

=

=

ψφ

δψψ

δφφ

                                    (2.9) 

where lk ,δ  is defined to be 1 if lk = , and 0 otherwise. 

Consider two row matrix functions ]  )( )([)( 10 Lxxx φφ=Φ  and ]  )( )([)( 10 Lxxx ψψ=Ψ . 

Let ][ ΨΦ  denote the matrix whose ),( lk  entry is lk ψϕ . The following relations exist 

between these two functions and a constant matrix C :   

                                                    

]|[]|[

]|[]|[

]|[][

ΨΦ=ΨΦ

ΨΦ=ΨΦ

ΦΨ=ΨΦ

T

T

CC

CC                                          (2.10) 

The orthogonality conditions in equation (2.9) can be rewritten as: 

0]  [

]  [

]  [

=ΨΦ

=ΨΨ

=ΦΦ

jj

jj

jj

I

I

 

where I  denotes the identity matrix, and 0 is the zero matrix. 

To see what orthogonality implies about the matrices jP  and jQ , combine the basis 

functions to produce: 
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I
jjjj

jjjj

jjjj =












ΨΨΦΨ

ΨΦΦΦ
=ΨΦΨΦ

−−−−

−−−−
−−−−

]|[]|[

]|[]|[
 ]]|[  ]|[[

1111

1111

1111  

Substituting equation (2.3) into the previous equation, leads to: 

IQPQP
jjjjjj =ΦΦ  ] ]|[ ]|[[  

Considering the relations listed in equation (2.10), one can obtain  

IQPQP
jjjjTjj =ΦΦ  ]|[ ]  [ ]|[  

Since I
jj =ΦΦ  ]  [ , the previous equation can be rewritten as: 

 ]|[  ]|[ 1−= jjTjj QPQP  

Thus, the matrix ]|[ jj QP  is an orthogonal matrix, which, in combination with equation 

(2.8), indicates that: 

TjjTjj QBPA )(   and )(  ==  

Thus, Haar wavelets are a simple case of orthogonal wavelets. It was originally believed that 

a smooth orthogonal wavelet system did not exist until Daubechies developed the first 

orthonormal, smooth, and compactly supported wavelet system [32]. The drawback of 

Daubechies wavelets is that the recursive rather than analytical representation of the wavelet 

functions limits their practical use. 

2.2.3  Semiorthogonal Wavelet System 

Orthogonality is not the only desirable property when constructing a wavelet basis. In 

fact, if smooth symmetric wavelets with compact supports are desired, orthogonality must be 

sacrificed. Wavelets, which are orthogonal to the scaling functions but not to each other, are 
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referred to as semiorthogonal wavelets. In mathematical notation, semiorthogonality can be 

written as: 

                                                   and , ,     0  | lkjallforj

l

j

k =ψφ                                    (2.11) 

The matrix representation of semiorthogonality is: 

 0  ]|[ =ΨΦ jj  

Changing the superscript to 1−j  and substituting equations (2.1) and (2.2) into the above 

equation, yields:    

                                                    0  ]|[)( =ΦΦ jjjTj QP                                           (2.12) 

To find a wavelet refinement matrix jQ , define  ]|[)( jjTjj PK ΦΦ= . The set of all 

possible solutions to equation (2.12) is called the null space of jK . Since the wavelet 

refinement matrix jQ  determines the wavelets jΨ , a multitude of bases for the null space 

jK  implies that there are the same number of wavelet bases for a given wavelet space j
W . 

To determine the wavelets, further constraints need to be imposed. B-spline wavelets are a 

good example of such a semiorthogonal construction. These wavelets are built from B-

splines, and have been developed to a large extent by Chui and his colleagues [33, 34]. A 

detailed description of B-spline wavelets is introduced in the next chapter. 

2.2.4  Biorthogonal Wavelet System 

Before defining biorthogonal wavelets, dual basis functions must first be introduced. 

Consider a basis ]   )(  )([)( 21 Lxuxuxu =  and a collection of functions 
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]   )(  )([)( 21 Lxuxuxu = . The dual basis corresponding to the basis )(xu  is the set of 

functions )(xu  satisfying the following: 

Iuu =]|[  

Dual basis functions are central to construct biorthogonal wavelets. Suppose )(x
j

Φ  and 

)(x
j

Ψ  are the duals corresponding to )(xjΦ  and  )(xjΨ  respectively. Thus, 

           
I

I

jj

jj

  ]|[

   ]|[

=ΨΨ

=ΦΦ
                                                 (2.13)  

A biorthogonal wavelet system is one in which the scaling functions are orthogonal to the 

dual wavelets and the wavelets are orthogonal to the dual scaling functions. In mathematical 

notation, the conditions defining biorthogonal wavelets can be written as  

landkjallfor
j

l

j

k

j

l

j

k

  , ,      
0|

0|









=

=

φψ

ψφ
 

The matrix representation of the conditions is 

          
0  ]|[

0   ]|[

=ΦΨ

=ΨΦ
jj

jj

                                                   (2.14) 

Combining equations (2.13) and (2.14), a concise statement of biorthogonality is obtained: 

                        I
jjjj

jjjj

jjjj =
















ΨΨΦΨ

ΨΦΦΦ
=ΨΦΨΦ

]|[]|[

]|[]|[
 ]]|[  ]|[[             (2.15) 

Suppose the synthesis matrices jP  and jQ  are used to define scaling functions and wavelets:  
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                                                    [ ] [ ]jjjjj QPΦ=ΨΦ −− 11                                           (2.16) 

The dual matrices 
j

P  and 
j

Q  define the dual scaling functions and wavelets: 

                                                 



Φ=



 ΨΦ

−− jjjjj

QP
11

                                         (2.17) 

To determine the dual matrices 
j

P  and 
j

Q , rewrite the biorthogonality conditions in 

equation (2.15) using superscript 1−j : 

I
jjjj =ΨΦΨΦ
−−−−  ]]|[  ]|[[
1111  

Next, substitute equations (2.16) and (2.17) into the previous biorthogonality conditions to 

obtain: 

IQPQP
jjjjTjj =ΦΦ  ]|[  ] []|[  

Since I
jj =ΦΦ  ] [ , the previous equation can be expressed as: 

                                                    IQPQP jjTjj

= ]|[]|[                                            (2.18) 

Recall the relation between the analysis and synthesis matrices in equation (2.8):   

[ ] 1
|

−
=







 jj

j

j

QP
B

A
 

Comparing these equations, leads to: 

                                                              )( Tjj

AP =                                                    (2.19) 

                                                              )( Tjj

BQ =                                                    (2.20) 

This indicates that a new subdivision scheme is defined by the analysis matrices jA  and jB . 

The scaling functions and wavelets of the new scheme are dual to the scaling functions and 
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wavelets of the original scheme. Single-knot wavelets are an example of biorthogonal 

wavelets, as was recognized by Sweldens [35] as a special case of lifting. Lifting is an 

operation that transforms a biorthogonal scheme defined by matrices jP , jQ , jA , and jB  

into a new biorthogonal scheme in the following fashion: 

                                               ]|[ ]|[ jjjjj

lift

j

lift SPQPQP −=                                       (2.21) 

                                                       






 +
=












j

jjj

j

lift

j

lift

B

BSA

B

A
                                           (2.22) 

Any choice of the matrix j
S  will construct a biorthogonal scheme. It is also possible to 

construct dual lifting in the following fashion (see [35]):   

                                                ]|[ ]|[ jjjjj

lift

j

lift
QQSPQP +=                                      (2.23)                                                                             

                                                      








−
=












jjj

j

j

lift

j

lift

SAB

A

B

A
                                            (2.24) 
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CHAPTER 3.  B-SPLINE WAVELETS 

 

B-spline wavelets are a class of semiorthogonal wavelets. These wavelets are constructed 

from B-splines, and have been developed to a large extent [34]. Endpoint-interpolating B-

spline wavelets are one of the important wavelet types used in hierarchical representation of 

curves and surfaces [36]. The followings explain how endpoint-interpolating B-spline 

wavelets are constructed. 

3.1  B-spline Scaling Functions 

The first step in designing B-spline wavelets is to select the scaling functions )(xjΦ  for 

a nested set of function spaces. This choice determines the nested spaces j
V  and the 

synthesis matrices jP . The process starts with the general definition of B-splines, and then 

specifies how to build uniform endpoint-interpolating B-splines. 

Given positive integers d  and k  )( dk ≥ , and a non-decreasing sequence of real 

numbers 10  , , ++dkuu L  called knots, for ki ,,0 L=  and dr ,,1 L= , the B-spline basis 

functions of degree d  are defined recursively as follows: 

                                              


 ≤≤

= +

otherwise

uuuif
uN

ii

i
0

1
)(

1

0,                                         (3.1) 

)()()( 1,1

11

1
1,, uN

uu

uu
uN

uu

uu
uN ri

iri

ri
ri

iri

i
ri −+

+++

++
−

+ −
−

+
−
−

=  

(The fractions are taken to be 0 when their denominators are 0) 
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Endpoint-interpolating B-splines of degree d  are obtained when the first and last knots have 

multiplicity 1+d . The functions dkd NN ,,0 ,,L  form a basis for the space of piecewise 

polynomials of degree d  with 1−d  continuous derivatives. 

A  B-spline curve of degree d  is defined by 

                                                       i

k

i

di cuNuf ⋅=∑
=0

, )()(                                                (3.2) 

where the { ic } are the control points, and the { )(, uN di } are the B-spline basis functions of 

degree d  on the nonperiodic knot vector }1 , ,1 , , , ,0 , ,0{

1

1

1

321LL43421L
+

+

+

=
d

kd

d

uuU . 

B-spline curves exhibit a number of properties that provide desirable geometric 

characteristics for modeling applications, namely: 

• Endpoint interpolation. When the first and last knots have multiplicity 1+d , the B-

spline curve will pass through the starting and ending control points.  

• Local support property. For a B-spline curve of degree d , manipulating a control 

point ic , the curve changes only in the interval ],[ 1++dii uu ; the curve is left 

unchanged elsewhere. This property enables a designer to modify the curve at 

selected intervals without influencing the overall sweep of the curve. 

• Strong convex hull property. A B-spline curve is contained in the convex hull of its 

control polygon. In fact, each segment is in the convex hull of the 1+d  control 

points, and therefore the convex hull affects the shape of the segment. 

• Differentiability. A B-spline curve is infinitely differentiable in the interior intervals, 

and it is at least kd −  times continuously differentiable at a knot of multiplicity k . 
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To construct uniformly spaced B-splines specify 12 −+= dk
j  and the equally 

distributed knot sequence kd uu ,,1 L+  are chosen to produce j2  equally spaced interior 

intervals. This gives d
j +2  B-spline basis functions of degree d  and level j . These basis 

functions form a basis for the vector space )(dV j . These functions may be used as the 

endpoint interpolating B-spline scaling functions. Figure 3.1 shows an example of these 

functions at level 2=j  for the cubic case. 

 

 

Figure 3.1  Endpoint-interpolating B-spline scaling functions for )3(2V . 

 

From the relationship ) ,1 ,0( ))(dim())(dim( 1 L=< + jdVdV jj , any scaling function in 

the vector space )(dV j  can be expressed as a linear combination of the scaling functions in 

the vector space )(1 dV j+ . Thus the spaces L ),( ),( 10 dVdV  are nested as required by 

multiresolution analysis. 

The condition that the vector space )(dV j  is nested is equivalent to requiring that the 

scaling functions be refinable. That is, for all L ,2 ,1=j , there must exist a constant matrix 

jP  (this is the synthesis filter described in equation 2.1) such that: 
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                                                            jjj Pxx )()(1 Φ=Φ −                                             (3.3) 

where [ ])()()()(
1210 xxxx

j

d

jjj
j −+

=Φ φφφ L .  

The synthesis filter jP  is a )2()2( 1 dd jj +×+ −  matrix. The entries of the synthesis filter 

can be developed using the theory of knot insertion for B-splines [31]. Figure 3.2 shows 

examples of the matrices jP  in case of cubic B-splines. The columns of jP  are sparse, and 

the interior columns, for 3≥j , are given by vertical translations of the fourth column, 

shifted down by two places for each column. 

3.2  Inner Product 

The second step in designing B-spline wavelets is the choice of an inner product, and the 

standard inner product can be used for this purpose: 

                             ∫=
1

0
)()(:, dxxgxfgf                                              (3.4) 

This choice defines orthogonality between the scaling functions )(xjΦ  and the wavelet 

functions )(xjΨ  in the nested spaces j
V . 

3.3  B-spline Wavelets 

The final step of developing a multiresolution analysis based on B-splines is to find basis 

functions for the spaces j
W , which are orthogonal complements to the spaces j

V . The 

wavelet space 1−j
W  is by definition a subspace of the space j

V , so the wavelet functions 

)(1 xj−Ψ  of the space 1−j
W  can be expressed as linear combinations of the scaling functions   
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Figure 3.2  The synthesis filter jP  for cubic B-splines.  
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)(xjΦ  of the space j
V . This means that there is a )2()2( 1−×+ jj d  constant matrix jQ  

satisfying   

                                                       jjj Qxx )()(1 Φ=Ψ −                                                 (3.5)  

where [ ])()()()( 1

12

1

1

1

0

1
1 xxxx

jjjj
j

−
−

−−−
−=Ψ ψψψ L . 

Since all wavelet functions in )(1 xj−Ψ  are orthogonal to all scaling functions in )(1 xj−Φ , 

we know that  0  | 11 =−− j

n

j

m ψφ for all m  and n . To handle all these inner products 

simultaneously, the notation for a matrix of inner products is used, as defined in section 

2.2.2. The orthogonality condition on the wavelets can be rewritten as:  

                                                         0  ]|[ 11 =ΨΦ −− jj                                                  (3.6)  

Substituting Equation 3.5 into Equation 3.6 yields: 

                                                         0  ]|[ 1 =ΦΦ − jjj Q                                                (3.7)   

The set of all possible solutions of jQ  is called the null space of ]|[ 1 jj ΦΦ − . A 

multitude of bases for the null space implies that there are different wavelet bases for a given 

wavelet space 1−j
W . To uniquely determine the jQ  matrices, compact support constraints 

are imposed to the homogeneous system of the linear equations. Figure 3.3 illustrates the 

structure of the jQ  matrices for cubic B-splines. The matrices jQ  are used to compute B-

spline wavelet functions. Figure 3.4 illustrates endpoint-interpolating B-spline wavelets for 

the cubic case at level 2=j . 

At this point, all of the steps in developing a multiresolution analysis based on B-splines 

are defined. To use B-spline wavelets, wavelet decomposition and wavelet reconstruction 

processes need to be implemented. Wavelet decomposition allows one to decompose a curve 
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Figure 3.3   The matrices jQ  for endpoint-interpolating cubic B-splines. 
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Figure 3.3  (continued) 

 

 

 

 

Figure 3.4  Endpoint-interpolating B-spline wavelets for )3(2W . 
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into a low-resolution version and a detail part. Equation 3.8 shows how to compute 1−j
C  and 

1−jD  from j
C  in a linear system.   

                                                      j

j

j
jj

C
D

C
QP   ]|[

1

1

=







−

−

                                               (3.8) 

where j
C  and jD  are column matrices of the corresponding coefficients. The coefficient 

matrix j
C   are typically the x , y , and z  coordinates of a curve’s control points in 3ℜ . 

Wavelet reconstruction can now be used to recover the original curve from its low-resolution 

and detail parts. The procedure is shown in Equation 3.9. 

                                                      11 −− += jjjjj DQCPC                                             (3.9) 

3.4  Two-dimensional Wavelet Transforms 

Wavelet transforms can be extended to two dimensions. In this research, the B-spline 

wavelet transform is extended to tensor product B-spline surfaces. Thus, multiresolution 

editing techniques can be applied to 3D tensor product B-spline surfaces.  

3.4.1  Tensor Product B-spline Surfaces 

A B-spline surface is defined by  

                                            ∑∑
= =

=
n

i

m

j

jiqjpi cvNuNvuS
0 0

,,, )()(),(                                    (3.10)  

where the }{ , jic  is a bidirectional net of control points, and the )}()({ ,, vNuN qjpi  are the 

products of the univariate B-spline basis functions on the nonperiodic knot vectors, 
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Since the boundary knots have multiplicity 1+p  and 1+q  with respect to u  and v  

respectively, the surface interpolates the four corner control points. This also implies that the 

boundary curves depend only on the boundary control points. 

3.4.2  B-spline Surface Wavelet Transforms 

There are two ways to transform B-spline surfaces. Each transformation is a two-

dimensional generalization of the one-dimensional wavelet transform.                

The first transform is called the standard decomposition. To obtain the standard 

decomposition of a B-spline surface, the wavelet transform is first applied to each row of 

control points. Next, the set of transformed rows is treated as a B-spline surface, and the 

wavelet transform is applied to each column of control points. The result is a simple-version 

of the B-spline surface along with its detail coefficients. The algorithm for the standard 

decomposition is given below. 

            StandardDecomposition: 

               levelj =  

               for 0=row  to 12 −+ d
j

 do 

                  Decomposition(ControlPoint) 

               end for    

               for 0=column  to d  do 

                  Decomposition(ControlPoint) 

               end for 

The standard reconstruction is the reverse process of the standard decomposition. The 

algorithm is given as: 
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            StandardReconstruction: 

                levelj =  

                for 0=column  to d  do 

                   Reconstruction(ControlPoint) 

                end for 

                for 0=row  to 12 −+ d
j

 do 

                   Reconstruction(ControlPoint) 

                end for 

The second two-dimensional wavelet transform is referred to as the nonstandard 

decomposition. This transformation alternates the transform operation between rows and 

columns. First, one step of the wavelet transform is executed in each row of the control 

points. Next, one step of the wavelet transform is applied to each column of the result. This 

process is repeated recursively until a simple-version B-spline surface is created. The 

corresponding algorithm is given below.       

            NonstandardDecomposition: 

                 levelj =  

                 while 0>j  do    

                      for 0=row  to 12 −+ d
j

 do 

                         DecompositionStep(ControlPoint) 

                      end for 

                      1−= jj                           

                      for 0=column  to 12 −+ d
j

 do 



www.manaraa.com

34 

 

 

                         DecompositionStep(ControlPoint) 

                      end for 

                 end while 

The pseudo code to perform the nonstandard reconstruction is given below. 

            NonstandardReconstruction: 

                 0=j  

                 while levelj <  do    

                      for 0=column  to 12 −+ d
j

 do 

                         ReconstructionStep(ControlPoint) 

                      end for 

                      1+= jj    

                      for 0=row  to 12 −+ d
j

 do 

                         ReconstructionStep(ControlPoint) 

                      end for              

                 end while 

For the tensor product surface analysis [37], the synthesis process is given by 

                                     [ ]

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
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111,1                              (3.11)  

where u  and v  are the resolution levels of the control net in the row-wise direction and 

column-wise direction respectively and vuF , , vu
G

,  and vuH , are wavelet coefficient matrices. 

The decomposition can be processed with some flexibility. A low-resolution version 

along the column-wise direction can be obtained from: 
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                                         1,11,111 )( ++++++ = vuTvvuvTv
CPCPP                              (3.12) 

The corresponding wavelet coefficients are computed from: 

                                  )()( ,111,11,111 vuvvuTvvuvTv CPCQDQQ ++++++++ −=                         (3.13)  

Similarly, a low-resolution version along the row-wise direction can be found from: 

                                              11,1111, )( ++++++ = uvuuTuvu PCPPC                                      (3.14)  

The corresponding wavelet coefficients are generated from: 

                                   111,1,1111, )()( ++++++++ −= uuvuvuuTuvu QPCCQQD                          (3.15)  

The fully low-resolution version is obtained by finding the column-wise coarse version of 

the row-wise coarse version or the row-wise coarse version of the column-wise coarse 

version. Equation 3.16 shows how to compute the fully low-resolution version in the matrix 

representation. 

                                  11,1111,11 )()( ++++++++ = uvuTvuTuvuvTv PCPPPCPP                          (3.16)   
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CHAPTER 4.  MULTIRESOLUTION EDITING FOR B-SPLINE SPACE 

CURVES AND SURFACES 

 

B-spline wavelets permit multiresolution editing for B-spline curves and surfaces [38]. 

This can help balance the desire to easily control overall sweep with the need to define 

localized detail for intuitive B-spline curve and surface modeling. This chapter describes how 

to apply multiresolution analysis to build B-spline creation and editing techniques that 

effectively balance the need for local control with the need to control the overall sweep of B-

splines.  

4.1  Conversion from Non-uniform B-splines to Uniform B-splines 

The starting point of multiresolution analysis is a nested set of vector spaces. In B-spline 

wavelets, j2  ),2,1( L=j  equally spaced interior intervals in B-spline knot vectors are 

chosen to construct the nested spaces, and B-spline basis functions are defined as the scaling 

functions. These properties determine that the B-spline multiresolution framework can only 

be applied for the uniform B-splines with j2  equally spaced interior intervals. Since non-

uniform B-splines are widely used to represent free-form curves and surfaces, this limits the 

usage of the framework in practice. To overcome this limitation, the research establishes the 

connection between non-uniform B-splines and the B-spline wavelets, and develops a 

method to convert non-uniform B-splines to uniform B-splines in the B-spline nested spaces.  

The theory of knot insertion and knot removal for B-splines [2] is employed to 

approximate non-uniform B-spines in the B-spline nested spaces. Since the vector spaces are 

defined on the unit interval, a vector space within the spaces can be found to be a good 
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approximation for a non-uniform B-spline representation. The complete set of steps to 

perform this conversion is shown as follows: 

• Find a vector space in the nested vector spaces to approximate a non-uniform B-

spline representation. A good approximation is one wherein the distance between any 

interior knot of the non-uniform B-spline representation and the closest knot of the 

vector space is within a meaningful tolerance.  

• Insert the interior knots in the vector space into the knot vector of the non-uniform B-

splines. This upgrades the non-uniform B-spline representation into a higher function 

space. It is important to note that the B-spline representation is not changed 

geometrically and parametrically. 

• Remove all the interior knots of the original non-uniform B-splines from the 

upgraded B-splines. This converts the non-uniform B-splines to uniform B-splines in 

the vector space.    

Figures 4.1 - 4.2 illustrate the conversion for non-uniform B-splines. Four viewports are 

depicted in each figure: Front (top left), Left (top right), Top (bottom left), and Perspective 

(bottom right). Figure 4.1 shows that a non-uniform B-spline curve is created through global 

interpolation (see Appendix for details), and then is converted to a uniform B-spline curve at 

resolution level 4=j . Figure 4.2 illustrates that a non-uniform B-spline surface is 

constructed through a set of section curves (see Appendix for details), and then is converted 

to a uniform B-spline surface at resolution level ( 2 ,3 == ji ). 
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(a) 

 

(b) 

Figure 4.1  Conversion from a non-uniform B-spline curve to a uniform B-spline curve in B-

spline nested spaces: (a) the blue curve is a non-uniform B-spline curve, created through a set 

of data points (purple); (b) the non-uniform B-spline curve is converted to a uniform B-spline 

curve (blue) at resolution level 4=j ; the white curve is its low resolution version at level 

0=j .   
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(a) 

 

(b) 

Figure 4.2  Conversion from a non-uniform B-spline surface to a uniform B-spline surface in 

B-spline nested spaces: (a) the surface is a non-uniform B-spline surface, constructed through 

a set of section curves (blue); (b) the non-uniform B-spline surface is converted to a uniform 

B-spline surface (solid) at resolution level ( 2 ,3 == ji ); the transparent surface is its low 

resolution version at level ( 0 ,0 == ji ).   
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4.2  Multiresolution Editing for B-spline Space Curves 

The foregoing chapters describe the recursive process of splitting control points j
C  of a 

B-spline space curve into a lower resolution 1−j
C  and a detail part 1−jD . Thus, the original 

control points j
C  can be expressed as a series of lower resolutions 10 ,..., −jCC  and detail 

parts 10 ,..., −jDD . This process is called wavelet decomposition, and is shown schematically 

in Figure 4.3.  

 

                    j
C   1−j

C  2−j
C  ...  1

C   0
C  

                                              1−jD                    2−jD   ...                   0D                                    

Figure 4.3  Decomposition for a B-spline space curve. 

 

The original control points j
C  can be recovered from the sequence 1100 ...,,, −jDDDC , 

which is known as a wavelet transform. The process is called wavelet reconstruction, and is 

shown schematically in Figure 4.4.  

 

                j
C  1−j

C  2−j
C  ...  1

C   0
C  

                               1−jD              2−jD  ...                       0D  

Figure 4.4  Reconstruction for a B-spline space curve. 

 

Wavelet decomposition and reconstruction, two important processes in multiresolution 

analysis, provide the basis for multiresolution editing of B-spline space curves. 
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4.2.1  Overall Sweep Editing for B-spline Space Curves  

Multiresolution editing allows for changing the overall sweep of a B-spline space curve 

while maintaining its fine details. In contrast to traditional editing methods where many 

control points need to be manipulated to deform a B-spline representation with complex 

details, multiresolution editing methods can achieve the same effect by editing only several 

control points at a low resolution level. 

B-spline function spaces are constructed through a series of uniformly spaced knot 

sequences. Subspaces are defined by removing the midpoint knot for each adjacent pair of 

interior intervals, so the knot span of the basis function in a spline space is only half as long 

as that of the basis function in its immediate subspace. This means that editing a single 

control point affects a larger portion of the curve in the subspace. At the lowest resolution 

level, the curve contains no interior knots, and editing a single control point affects the shape 

of the entire curve. At the highest resolution level, editing a single control point influences 

only a narrow portion of the curve.  

Let j
C  be the original control points of a B-spline space curve )(uf j . Assume that  k

C  

is a lower resolution version of j
C , and k

C∆  is an edited part at the lower resolution level. 

The edited curve at the highest resolution can be computed through reconstruction: 

                                      kkjjjjjj
CPPPCCCC ∆+=∆+= +− 11...                               (4.1)   

Control point editing at any particular resolution level invalidates the control points at all 

other resolution levels. To maintain consistency in the multiresolution representation, the 

new control points at the edited resolution level must be decomposed to lower resolution 
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levels and reconstructed to higher resolution levels. Figure 4.5 show a schematic example of 

the process at editing level k . 

 

                                                  k
C∆                                  

                                        

j

C
1−j

C  
2−j

C ... k
C

1−k

C ... 1

C
0

C  

                      1−jD             2−jD ...                        
1−k

D ...                    
0

D  

Figure 4.5  Overall sweep editing at level k . 

 

During the editing process, modification of the control points k
C∆  changes the overall 

sweep of the B-spline space curve, and the details 1, −jk DD L  preserve the original fine 

details on the curve. The decomposition process splits the edited version kk
CC ∆+  into new 

low resolution versions 
01

,CC
k

L
−

 and new details 
01

, DD
k

L
−

. Figures 4.6 - 4.8 represent 

an example of multiresolution decomposition for a B-spline space curve, and show the 

overall sweep editing at different resolution levels. Four viewports are depicted in each 

figure: Front (top left), Left (top right), Top (bottom left), and Perspective (bottom right). 

The original curve and its low resolution version are shown in (a). The overall sweep of the 

curve after editing one control point at lower level is shown in (b). 
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(a) 

 

(b) 

Figure 4.6  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the 

original curve; (a) the blue curve is the one at the highest level ( 3=j ), and the white curve 

is the one at the lowest level ( 0=j ); (b) the overall sweep of the curve after editing one 

control point (green) at level 0=j . 
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(a) 

 

(b) 

Figure 4.7  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the 

original curve; (a) the blue curve is the one at the highest level ( 3=j ), and the white curve 

is the one at lower level ( 1=j ); (b) the overall sweep of the curve after editing one control 

point (green) at level 1=j . 
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(a) 

 

(b) 

Figure 4.8  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the 

original curve; (a) the blue curve is the one at the highest level ( 3=j ), and the white curve 

is the one at lower level ( 2=j ); (b) the overall sweep of the curve after editing one control 

point (green) at level 2=j . 
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4.2.2  Detail Editing for B-spline Space Curves 

Another form of editing that is naturally supported by multiresolution analysis is one of 

editing the detail parts of a B-spline space curve without affecting its overall sweep. 

Finkelstein and Salesin introduced a method to edit the character of a curve by replacing the 

existing set of details 10  ..., , −jDD  with some new set 
10

 ..., ,
−j

DD . As previously discussed, 

this approach does not produce an interactive and intuitive editing interface. Moreover, the 

wavelet representations of detail tend to behave in undesirable ways during editing [14]. 

To address these deficiencies, this research introduces the knot refinement method of B-

splines into multiresolution analysis, and establishes the connection between multiresolution 

analysis and B-spline subdivision to define different levels of resolution. This method 

facilitates control point editing and provides an intuitive and convenient interface for 

interactive detail editing. 

4.2.2.1  Knot Refinement  

It is often necessary to simultaneously insert several knots into the knot vector of a B-

spline; the method is known as knot refinement [2]. Let ∑
=

⋅=
n

i

idi cuNuf
0

, )()(  be a B-spline 

curve defined on the knot vector },,{ 0 muuU L= , and let },,{ 0 rttt L=  be a series of non-

decreasing values in ),( 0 muu . The elements of t  are to be inserted into the knot vector 

},,{ 0 muuU L=  to form a new knot vector U . It is obvious that the vector space defined on 

the original knot vector U  is a subspace of the vector space defined on the new knot vector 

U , so the curve )(uf  has a representation in the space 
u

V  
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                                                       ∑
++

⋅=
1

0

, )()(
rn

idi cuNuf                                               (4.2)         

where the )}({ , uN di  are the basis functions on the knot vector U . 

The process of computing the new control points }{ ic  in Equation 4.2 is referred to as 

knot refinement. It is important to note that knot refinement extends the curve into a higher 

resolution space. The space curve itself is not changed either geometrically or parametrically. 

A classic knot refinement algorithm is given by Boehm and Prautzsch [39].  

4.2.2.2  B-spline Wavelets and Subdivision 

From the B-spline local support property, it is clear that the knot span for a basis function 

)(, uN di  is within the interval ),[ 1++dii uu . This means that it is impossible to edit fine details 

within the interval ),[ 1++dii uu  since each control point affects the entire span. This results in 

limitations in detail editing for a B-spline curve. To overcome this limitation, the knot 

refinement is applied to introduce sufficient resolution in the curve to facilitate editing at any 

desired level of detail.  

Let ∑
−+

=

⋅=
12

0

, )()(
d

i

j

i

j

di

j

j

cuNuf  be a B-spline curve defined at resolution level j , with the 

knot vector }2,,2,12,,2,1,0,0{2/1

11

43421 LL321L
++

−=
d

jjj

d

jU . For each interior interval 

),[ 1+ii uu , the midpoint of the interval is used as a new inserted knot. Using the knot 

refinement method, the curve is extended to resolution level 1+j , and editing one control 

point at this level will influence a curve region that is only half the size of the region 

influenced by the editing of a single control point at resolution level j . The curve is not 
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changed geometrically and parametrically, so any former editing information is preserved. In 

matrix notation, this can be expressed as 

                                                  11 )()( ++ ⋅=⋅ jjjj CuNCuN                                           (4.3) 

This process can be repeated recursively, and it creates a subdivision scheme. Recalling 

nested spaces in developing B-spline wavelets, indicates that the subdivision scheme leads to 

such a sequence of spaces. This means that the basis functions in the subdivision scheme are 

refinable; that is, each basis function at resolution level j  can be expressed as a linear 

combination of the basis functions at resolution level 1+j . Referring to Equation 3.3, this 

can be written as 

                                                       11 )()( ++= jjj PuNuN                                                (4.4) 

Substituting Equation 4.4 into Equation 4.3 gives 

                                                            jjj
CPC

11 ++ =                                                      (4.5)  

As a result, the constant matrix jP  serves as the synthesis matrix for the scaling functions 

)(xjΦ  and the subdivision matrix for the control points j
C .  

The subdivision can be applied to the curve recursively until detail editing on the curve 

meets the user’s requirements. This process refines the curve to a higher function space 

where the required fine detail features can be achieved. Since the subdivision scheme leads to 

the B-spline nested spaces, B-spline wavelet decomposition can be applied to the refined 

curve. The detail features are edited at the highest resolution level, and the overall sweep is 

changed by multiresolution editing at low resolution levels. Therefore, the detail editing 

method effectively manages the balance between local and global control for B-splines. 
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Figure 4.9 shows the subdivision procedure for extending a B-spline curve to a high 

resolution level. Figure 4.10 shows detail editing at the extended high resolution level. 

Figures 4.11 - 4.13 illustrate detail editing for a B-spline space curve at different resolution 

levels. Four viewports are depicted in each figure: Front (top left), Left (top right), Top 

(bottom left), and Perspective (bottom right). The subdivision curve is shown in (a), and 

detail editing at the subdivision curve is shown in (b). Figure 4.14 shows an example of 

global control for the subdivision curve.   

 

                            
                                    

n
C

1−n
C ... 1+j

C
j

C  1−j
C ...  1

C
0

C  

                                                                         1−jD ...                     
0D  

Figure 4.9  Subdivision procedure to extend a curve to the high resolution level n . 

 

 

n
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C
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C ... 1+j
C

j
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1−j

C ...  
1

C
0
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1−n

D                       
j

D                   
1−j

D ...                     
0

D  

Figure 4.10  Detail editing at the extended resolution level n .                       

n
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1+j
P  
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(a) 

 

(b) 

Figure 4.11  Detail editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the original 

curve; (a) the blue curve is the one at the highest level ( 3=j ); (b) detail editing after editing 

one control point (green) at level 3=j .   
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(a) 

 

(b) 

Figure 4.12  Detail editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the original 

curve; (a) the blue curve is the curve after one step subdivision; the curve is refined to next 

higher resolution level ( 4=j ); (b) detail editing after editing one control point (green) at 

level 4=j .   
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(a) 

 

(b) 

Figure 4.13  Detail editing: there are four resolution levels ( 3 2, 1, ,0=j ) at the original 

curve; (a) the blue curve is the curve after two step subdivisions; the curve is refined to next 

two higher resolution level ( 5=j ); (b) detail editing after editing one control point (green) at 

level 5=j .   
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(a) 

 

(b) 

Figure 4.14  Global control for the subdivision curve: there are four resolution levels 

( 3 2, 1, ,0=j ) at the original curve; the blue curve is the curve after two step subdivisions; 

(a) detail editing after editing one control point (green) at level 5=j ; (b) overall sweep 

editing after editing one control point (green) at level 0=j .   
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4.3  Multiresolution Editing for B-spline Surfaces 

As discussed in section 3.4, the one-dimensional multiresolution scheme can be applied 

to 3D tensor product surfaces. A tensor product B-spline surface is defined on a bidirectional 

control net. This allows the surface to be denoted in the u  and v  directions. Each row 

aligned along the u  direction is referred to as a v -curve, and each column aligned along the 

v  direction is a u -curve. To apply multiresolution analysis to the surface, all u  and v  curves 

can be considered as independent curves to which the analysis and synthesis algorithms may 

be applied. For example, to decompose a B-spline surface, the analysis filter is applied on all 

rows in the control net, and then on all columns in the smaller control net that results from 

reducing the resolution of all rows. Figure 4.15 shows the decomposition process for a tensor 

product surface. To allow the user to edit at any resolution level, all kinds of reconstruction 

situations are included, as shown in Figure 4.16.   
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Figure 4.15  Decomposition for a tensor product B-spline surface. 
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Figure 4.16  Reconstruction for a tensor product B-spline surface. 

 

 

4.3.1  Overall Sweep Editing for B-spline Surfaces 

The method for editing the overall sweep of a B-spline surface is a straightforward 

extension of the curve-editing method. Since editing on a B-spline surface can be executed in 

the u  and v  directions, this gives the user greater freedom with respect to controlling the 

overall sweep of the surface. For instance, if the user chooses the lowest resolution level in 

the u  direction, any control point editing at this level will affect the entire shape of the 

surface along the u  direction. The user can choose different resolution levels in the v  

direction to independently determine the affected portion of the surface in the v  direction. At 

the lowest level in the v  direction, the entire shape in that direction is affected. At the highest 

level in the v  direction, only the local narrow portion in that direction is changed.  

The complete set of steps needed to perform overall sweep editing is shown as follows: 

Step 1: Control point editing at a resolution level. Figure 4.17 shows an example of overall 

sweep editing for a surface at resolution level )0,2( −u .     
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Figure 4.17  Overall sweep editing for a surface at resolution level ( 2−u , 0). 

 

 

Step 2: Reconstruction from the edited resolution level. The original details along the 

construction path are used to preserve the original fine details on the surface.  
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Figure 4.18  Reconstruction from the edited level ( 2−u , 0) to the highest level ( vu, ). 
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Step 3: Decomposition for the surface. This process updates all the resolution levels except 

those on the construction path in step 2, as shown in Figure 4.19. 
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Figure 4.19  Decomposition for the surface. 

 

 

Figures 4.20 - 4.23 represent an example of multiresolution decomposition for a B-spline 

surface, and show the overall sweep editing at different resolution levels. Four viewports are 

depicted in each figure: Front (top left), Left (top right), Top (bottom left), and Perspective 

(bottom right). The original surface and its low resolution version are shown in (a). The 

overall sweep of the surface after editing one control point at lower level is shown in (b). 

4.3.2  Detail Editing for B-spline Surfaces 

The one-dimensional detail editing method can be extended to two-dimensional 

situations. Subdivision can recursively be applied to a tensor product surface in the u  or v  

direction until detail editing on the surface meets fine detail requirements. The user 

determines the subdivision direction and the steps of the subdivision in that direction. The  
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(a) 

 

(b) 

Figure 4.20  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  

direction and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) 

the solid surface is the one at the highest level ( 2 ,3 == ji ); the transparent surface is the 

one at the lowest level ( 0 ,0 == ji ); (b) the overall sweep of the surface after editing one 

control point (green) at level ( 0 ,0 == ji ).  
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(a) 

 

(b)  

Figure 4.21  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  

direction and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) 

the solid surface is the one at the highest level ( 2 ,3 == ji ); the transparent surface is the 

one at lower level ( 2 ,0 == ji ); (b) the overall sweep of the surface after editing one control 

point (green) at level ( 2 ,0 == ji ).  
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(a) 

 

(b) 

Figure 4.22  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  

direction and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) 

the solid surface is the one at the highest level ( 2 ,3 == ji ); the transparent surface is the 

one at lower level ( 0 ,1 == ji ); (b) the overall sweep of the surface after editing one control 

point (green) at level ( 0 ,1 == ji ).  
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(a) 

 

(b)  

Figure 4.23  Overall sweep editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  

direction and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) 

the solid surface is the one at the highest level ( 2 ,3 == ji ); the transparent surface is the one 

at lower level ( 2 ,1 == ji ); (b) the overall sweep of the surface after editing one control 

point (green) at level ( 2 ,1 == ji ).  
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surface is refined to a higher function space where the required fine detail features can be 

achieved. Since the subdivision scheme leads to the B-spline nested spaces, B-spline wavelet 

decomposition can be applied to the refined surface. This can effectively manage the balance 

between local and global control for the B-spline surfaces. 

The steps for performing surface detail editing are listed as follows:  

Step 1: Subdivision to extend the resolution level in the u  and v  directions. The user 

determines the path to construct a high resolution level. Figure 4.24 shows an example of 

refining a surface first along the v  direction, and then along the u  direction.  
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Figure 4.24  Level refinement from resolution level ( vu, ) to resolution level ( nm, ). 

 

Step 2: Detail editing at the highest resolution level, as shown in Figure 4.25. 

Step 3: Decomposition for the surface. Since detail editing is executed at the highest 

resolution level, the surface needs to be decomposed to update all the low resolution levels. 

Figure 4.26 presents an example of decomposition for the edited surface. 

subdivision subdivision 

subdivision 

subdivision 
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Figure 4.25  Detail editing at the highest resolution level ( nm, ). 

 

   

                 
nm

D
,1−
              

nm

D
,2−
                           

n

D
,0

 
nm

C
,

 
nm

C
,1−

 
nm

C
,2−
  ...   

n

C
,1

 
n

C
,0

 
                

               
1, −nm

D              
1,1 −− nm

D            
1,2 −− nm

D         
1,1 −n

D            
1,0 −n

D  
        

1, −nm

C              
1,1 −− nm

C             
1,2 −− nm

C        
1,1 −n

C             
1,0 −n

C  

         M                  M                   M              M                 M  

        
1,m

C                
1,1−m

C               
1,2−m

C         
1,1

C               
1,0

C  
                 

               
0,m

D                
0,1−m

D              
0,2−m

D          
0,1

D             
0,0

D  
        

0,m

C                
0,1−m

C               
0,2−m

C         
0,1

C              
0,0

C  
 

Figure 4.26  Decomposition for the edited surface.                                     

 

 

Figures 4.27 - 4.30 illustrate detail editing for a B-spline surface at different resolution 

levels. Four viewports are depicted in each picture: Front (top left), Left (top right), Top 

(bottom left), and Perspective (bottom right). The subdivision surface is shown in (a), and 

detail editing at the subdivision surface is shown in (b). Figure 4.31 shows an example of 

global control for the subdivision surface. 
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(a) 

 

(b) 

Figure 4.27  Detail editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  direction 

and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) the solid 

surface is the one at the highest level ( 2 ,3 == ji ); (b) detail editing after editing one control 

point (green) at level ( 2 ,3 == ji ).  
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(a) 

 

(b) 

Figure 4.28  Detail editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  direction 

and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) the solid 

surface is the original surface after one step subdivision in the u  direction; the surface is 

refined to next higher resolution level in the u  direction ( 2 ,4 == ji ); (b) detail editing after 

editing one control point (green) at level ( 2 ,4 == ji ). 
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(a) 

 

(b) 

Figure 4.29  Detail editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  direction 

and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) the solid 

surface is the original surface after one step subdivision in the v  direction; the surface is 

refined to next higher resolution level in the v  direction ( 3 ,3 == ji ); (b) detail editing after 

editing one control point (green) at level ( 3 ,3 == ji ).  
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(a) 

 

(b) 

Figure 4.30  Detail editing: there are four resolution levels ( 3 2, 1, ,0=i ) in the u  direction 

and three resolution levels ( 2 1, 0,=j ) in the v  direction at the original surface; (a) the solid 

surface is the original surface after one step subdivision in the u  and v  directions; the 

surface is refined to next higher resolution level in the u  and v  directions ( 3 ,4 == ji ); (b) 

detail editing after editing one control point (green) at level ( 3 ,4 == ji ).  
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(a) 

 

(b) 

Figure 4.31  Global control for the subdivision surface: there are four resolution levels 

( 3 2, 1, ,0=i ) in the u  direction and three resolution levels ( 2 1, 0,=j ) in the v  direction at 

the original surface; the solid surface is the original surface after one step subdivision in the 

u  and v  directions; (a) detail editing after editing one control point (green) at level 

( 3 ,4 == ji ); (b) overall sweep editing after editing one control point (green) at level 

( 0 ,0 == ji ). 
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CHAPTER 5.  MULTIRESOLUTION SURFACE EDITING WITH 

APPLICATION TO PRODUCT DESIGN 

 

Overall sweep editing, detail blending, and detail orientation are a series of methods 

based on multiresolution analysis used to manipulate curves and surfaces. This chapter 

presents the application of these methods in product design and styling. The concept of 

overlays is additionally developed as a convenient and efficient method for superposing 

detail features on a surface.    

5.1  Introduction 

B-spline wavelets allow multiresolution representation of curves and surfaces [38]. This 

property can be used to significant advantage for algorithms in computer-aided design and 

manufacturing. In this section, application to product design and styling are presented. 

Multiresolution surface representations have received considerable attention in recent 

years in the fields of geometric modeling, computer graphics, and visualization, primarily 

because they enable designing and editing of a surface at different levels of detail. In 

addition, the multiresolution approach brings with it other useful properties such as local and 

global level of details, efficient surface compression, progressively refinable reconstruction, 

and error bounds [1]. 

In this section, multiresolution methods that can edit the surface at multiple resolution 

levels are presented. Using these methods, the user can choose either to edit the detail 

features of the object, or to edit the overall sweep of the object while preserving the detail 

features. Furthermore, detail features may be selectively hidden and superposed for editing 
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convenience. The addition of detail features can be made at the highest resolution level by 

control point manipulation, sweep deformation and error control, or using a feature library 

and overlays. The concept of feature library and the use of overlays in a multiresolution 

framework represent new methods. These methods can significantly improve the efficiency 

and quality of product design and styling. 

The remainder of the chapter is organized as follows. In section 5.2 the methods of 

multiresolution editing for free-form product design and styling are developed. Section 5.3 

illustrates the use of these editing methods. Conclusions are presented in section 5.4. 

5.2  Free-form Surface Editing 

Given a B-spline surface n
C  and all of its low resolution versions 10 ,..., −nCC  and details 

10 ,..., −nDD , multiresolution analysis allows for two very different kinds of surface editing. If 

some low resolution version j
C  is modified and then incorporated back in with the details 

1,..., −nj DD , the overall sweep of the surface will be modified. On the other hand, if the set of 

details 11,...,, −+ njj DDD  are modified while leaving the low resolution representations 

1,..., −nj CC  unchanged, the fine grained character of the surface will be modified without 

affecting its overall sweep. These two types of editing are explored more fully below. 

5.2.1  Overall Sweep Editing 

Two types of methods to edit the overall sweep of a surface and add additional details to 

the surface are now explored. 

5.2.1.1  Resolution Level Editing 
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To obtain the desired overall sweep, the low resolution versions 10 ,..., −nCC  are edited, 

and detail features are added at the highest resolution level. 

Assume n
C  to be the control points of the original B-spline surface ),( vuS . Let k

C , 

,1,...,0 −= nk  be the low resolution versions of n
C , and let k

C∆  be an edited version of  k
C  

at resolution level k . From Equation 2.6, a new equation for computing the edited version of 

a surface may be developed through reconstruction as follows: 

                     ))((...( 011211 CPCPPCPCCC nnnnnn ∆+∆++∆+∆+= −−                     (5.1) 

where n
C∆  is the edited part at the highest resolution level. In this application, fine details 

are added at this level to define the detail features on the design surface. An example of this 

kind of editing is shown in Figure 5.1. 5.1(a) which shows the original model; 5.1(b)-5.1(e) 

shows the overall shapes after editing the central two control points at different resolution 

levels ( 4 3, 2, ,1=j ); 5.1(f) shows the detail features added at the highest resolution level 

( 5=j ).  

5.2.1.2  Error-Control Editing 

The second method supported by overall sweep editing is Error-Control editing. In this 

method, a simple B-spline surface is defined first, and then fine details are added to the 

simple surface. To obtain the desired overall sweep of the surface, wavelet transforms are 

used to edit the surface at different resolution levels. Since this process can deform the shape 

of the details, an error control strategy is implemented to minimize the distortion. 

The error control on the detail features is done using a least squares surface 

approximation approach. A series of data points on the referenced details are used to solve 

the least squares surface fitting problem. 
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                                       (a)                                                                  (b) 

 
 

                                    (c)                                                                   (d) 

 
                                         (e)                                                                  (f) 

 

Figure 5.1  Resolution level editing: (a) the original model, consisting of 34×34 control 

points; (b) the overall sweep after editing the central two control points at level j = 1; (c) the 

overall sweep after editing the central two control points at level j = 2; (d) the overall sweep 

after editing the central two control points at level j = 3; (e) the overall sweep after editing 

the central two control points at level j = 4; (f) fine details added at the highest level (j = 5).  
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with )0,0(0,0 sQ = , )0,1(0, sQn = , )1,0(,0 sQ m = , and )1,1(, sQ mn = . 

The solution for the least squares surface fitting is straightforward. First, curves are fit 

across the data in one direction, and then curves through the resulting control points are fit 

across the other direction. The detailed information for the algorithm can be found in [2]. 

Figure 5.2 shows the sequences resulting from this kind of editing method. Figure 5.2(c) 

shows the result after error control, and the relative error is within %10 . 

5.2.2  Detail Editing 

Another form of editing supported by the wavelet-based multiresolution surface is one of 

editing details on the surface without affecting its overall sweep. The details of the surface 

can be edited and then the desired features are incorporated into the surface via B-spline 

wavelet reconstruction. The following two methods are provided for editing details. 

5.2.2.1  Detail Blending  

The basic idea behind detail blending is to first filter out the different details using 

wavelet transforms, and then synthesize the desired detail features into a surface. In this 

application, simple surfaces with different detail features are defined first, then the detail  
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                                    (a)                                                                     (b) 

    
                                   (c) 
 

Figure 5.2  Error-Control editing: (a) the original model with details; (b) the overall sweep 

after resolution level editing; (c) the overall sweep after Error-Control editing; the relative 

error is less than 10%.  

 

features are obtained from wavelet transforms, and finally the desired detail features are 

synthesized into a surface.  

From Equation 2.6, an equation for calculating the edited version at resolution level 1+j  

can be developed: 

                                   )( 11

111 j

kk

jjjjjj
DDDQCPC αα ++++= +++ L                           (5.2)  

where j

k

j
DD ,,1 L  are different details at resolution level j , and kαα ,,1 L  are detail feature 



www.manaraa.com

75 

 

 

coefficients used to control the sizes of the details. Figure 5.3 illustrates the process of detail 

blending. 

5.2.2.2  Detail Orientation      

In practice, one often needs to edit part of a surface in order to add fine there. To achieve 

this objective, subdivision techniques can be employed to first construct an overlay on this 

 

 
(a) (b) 

 
                                (c) 
 

Figure 5.3  Detail blending: (a) the original model with details; (b) the model after adding 

another set of details; (c) the size of the details scaled by a factor of 2.  
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area, then add detail features on this overlay, and finally use the local reference frame of the 

overlay to orient the details.  

From the discussion in section 4.1.2, the subdivision process can be expressed as  

                                                             jjj
CPC

11 ++ =                                                     (5.3) 

where 1+jP  is a rectangular constant matrix. Subdivision can recursively be applied on the 

edited area until the editing at a given resolution level on the overlay meets fine detail 

requirements.  

A library of detail features have been developed to allow the user to choose different 

detail features. Since all detail features in the library are constructed along a straight axis, a 

local reference frame on the overlay is employed to orient the detail features. In this 

application the tangent and normal of the most influenced point of the overlay at a resolution 

level is used as the local reference frame of the detail features at the same level. The 

reference points correspond to the maximum values of the wavelets at that level. For 

example, Figure 5.4(a) shows the wavelet functions at the resolution level 1=j . The 

parameter positions corresponding to the maximum values of the wavelets are 0.173000 and 

1.000000 respectively. These parameter positions are used as the reference points of the local 

reference frames, and the tangent and normal of these reference points are used to orient the 

added detail features at the same resolution level.  

The detail orientation process can be expressed as: 
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                                                (a)                                                                    (b)  

 
                                        (c)                                                                   (d) 

 

 

 
                                         (e)                                                                  (f) 

 

Figure 5.4  Detail orientation and overlay: (a) the wavelets at level j = 1; (b) the original 

model with 34×18 control points; (c) the model after adding one set of details on the right 

side using overlay and detail orientation; (d) the view of the model in the Y-axis direction; 

(e) the model after adding one set of details on the left side using overlay and detail 

orientation; (f) the view of the model in the Y-axis direction; (g) the model with the details 

scaled by a factor of 0.5; (h) the view of the model in the Y-axis direction.      
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                                           (g)                                                               (h) 
 

Figure 5.4  (continued) 

 

where j

xD  and j

yD  are the details in the fixed xy -orientation reference frame, j

xD '  and j

yD '  

are the details oriented in the local reference frame, and α  is the angle between the xy -

orientation reference frame and the local reference frame. 

The oriented details are added to the overlay in the detail blending method. Figure 5.4 

shows an example using detail orientation. 

5.3  Results 

The methods described in section 5.2 can be combined to create a complex model with 

detail features. In practice, when the model is complicated one method is often insufficient to 

realize product design and styling. The following example shows how to combine these 

methods to set up a complex model with detail features.  

Figure 5.5 shows an example of a toy bicycle horn. Initially a bicubic tensor-product 

surface is set up to represent a simple cylinder. The total number of control points is 3535× , 

and there are six resolution levels in each direction. At the lowest resolution level, several 

control points are manipulated to edit the overall sweep of the model. Figure 5.5(b) shows 
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the edited result after reconstruction. At the highest resolution level, the control points are 

edited to add detail features to the model, as shown in Figure 5.5(c). In Figure 5.5(d), the 

detail blending method is used to add one kind of detail feature on the model. The detail 

feature is obtained from the feature library with the size scaled to 1/3. In Figure 5.5(e), an 

overlay on the upper part of the model is constructed, and another kind of detail feature is 

obtained from the feature library with double the size of the original one, and finally detail 

orientation is applied to these features. Figure 5.5(f) shows the enlarged model viewed from 

the Y-axis direction. 

5.4  Conclusions 

In this chapter, a series of methods based on multiresolution analysis are described with 

applications to product design and styling. These methods include overall sweep editing and 

detail editing. A detail feature library is defined from which the user can select detail features 

as a convenient and interactive method for adding and editing details. The concept of overlay 

and detail orientation are used to apply these features. Since the method for orienting details 

with respect to tangent and normal properties are employed at a coarser resolution level, error 

and deformation in detail features will result. More accurate detail orientation methods may 

need to be developed in the future. 
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                                          (a)                                                            (b) 

 

 
                                          (c)                                                            (d) 

 

 
 

                                          (e)                                                             (f) 

 

Figure 5.5  A bicycle horn designed by using multiresolution surface editing: (a) a simple 

cylinder designed from a bicubic B-spline surface; (b) the model after resolution level editing 

at level j = 0; (c) the model after resolution level editing at level j = 5; (d) the model after 

adding one set of details using detail blending; (e) the model after adding another set of 

details using detail orientation; (f) the enlarged model viewed in the Y-axis direction. 
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CHAPTER 6.  CONCLUSIONS AND FUTURE WORK 

6.1  Conclusions 

This dissertation introduces a new multiresolution approach to the creation of certain 

classes of free-form curves and surfaces that allows a designer to more easily manage the 

balance between local and global control. The techniques presented in this dissertation utilize 

a wavelet decomposition of a B-spline curve or surface to allow a designer to easily develop 

the basic shape, and then seamlessly switch to higher levels of detail to add additional 

definition. A surfacing kernel based on these wavelet-based B-splines is used as the basis for 

developing 3D curve and free-form surface modeling techniques. The algorithms described 

in the dissertation are implemented in a software system that is used to illustrate their utility 

and compare them to existing methods. 

6.2  Future Work 

Multiresolution analysis based on wavelets plays an increasing role in computer graphics 

and geometric modeling. Its utility as a powerful tool for efficiently representing functions at 

multiple levels of detail is expected to increase as its usefulness is further recognized. 

However, many issues are still open and should be explored before the full power of this 

representation can be realized. The following sub-sections discuss several areas where 

additional related work may be fruitful. 

6.2.1  Multiresolution Texture Mapping 

Multiresolution editing techniques can be utilized to simplify the assignment of texture 

coordinates for complex textures. In background modeling, several 2D images are used as 
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backgrounds to construct a geometric model. This construction is only a coarse mapping. 

Delineating a set of features in an image will be the first step to refining the geometry. The 

positions of these features in texture space can be obtained by specifying the corresponding 

features in other images. The user could then specify the final positions that these features 

should take on the geometric model. Multiresolution editing techniques could be utilized to 

modify the geometry so that these texture features properly correspond to the desired 

positions on the geometry. This method will unify the modeling process and the texturing 

process into a single method, and is expected to avoid texture distortion and some of the 

complications of more conventional texture mapping approaches.  

6.2.2  Multiresolution Editing for Rational B-spline Curves and Surfaces 

In this dissertation, three-dimensional space is used, and x , y , and z  coordinates of B-

spline control points are manipulated to define the different levels of resolution. Some 

designers may wish to work with rational B-spline curves and surfaces to represent a number 

of specific curve and surface types, e.g. circles, ellipses, cylinder, cones, spheres, etc. 

Multiresolution B-spline representation can be extended to include rational B-spline curves 

and surfaces. Rational B-spline curves and surfaces use homogeneous coordinates to 

represent the curves and surfaces in three-dimensional space as polynomial curves and 

surfaces in four-dimensional space [2]. The weight w  is used as an extra dimension, wherein 

any point in four-dimensional space is expressed as ),,,( wzyxPw = . To apply 

multiresolution editing for ration B-spline curves and surfaces, the weight w  should be 

included in Equation 2.4, Equation 2.5, and Equation 2.6. Wavelet decomposition and 

reconstruction for weights will follow the same steps as x , y , and z  coordinates of control 
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points. The B-spline wavelet transform approach is also easily extended to accommodate 

additional dimensions. It will involve appending another dependent variable to B-spline 

curves or surfaces.   
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APPENDIX.  B-SPLINES 

 

B-splines provide a unified, robust representation for free-form curves and surfaces. The 

following is a brief introduction to the B-spline curve and surface construction techniques 

used in this work. For a more complete presentation see references [2, 3, 4, 40, 41].   

A.1  Surface Lofting 

Surface lofting is a standard B-spline surface construction technique. Lofting, also known 

as skinning, is the process of blending a set of section curves to create a B-spline surface [2]. 

The blend direction, sometimes referred to as the longitudinal direction, is denoted as the v  

direction.  

Lofting is defined as follows. Let  

                                           ki

n

i

dik cuNuf ,

0

, )()( ⋅=∑
=

  mk ,,0 L=                                   (A.1)   

be the section curves. Each section curve must have the same knot vector U  and common 

degree d . In addition, each section curve is assigned a parametric value kv  based on the 

averaging of the control point spacing. The control points of the section curves are then 

interpolated in the v  direction, yielding the control points jic ,  of the lofting surface. Figure 

A.1a shows four B-spline curves and their control points. Four v -directional interpolations 

are then executed, as shown in Figure A.1b. The resulting control points in Figure A.1b are 

actually the control points for a B-spline surface that interpolates the original four curves. 

The surface is shown in Figure A.1c.  
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       (a) original curves          (b) interpolated control points         (c) resulting surface   

Figure A.1  Surface lofting. 

 

A.2  Parameterization 

Given a set of data points }{ kQ , nk  , 1, ,0 L= , parameterization is the process for 

assigning parametric values ku  to the points kQ .  There are three common methods for 

parameterization: equally spaced, chord length, and centripetal [2]. 

In the equally spaced method, the parameters are defined as 

                                                      00 =u         1=nu  

                                                   
n

k
u k =       1 , 1, −= nk L                                           (A.2)   

To assign parameters using the chord length method, first calculate the total chord length 

                                                         ∑
=

−−=
n

k

kk QQd
1

1                                                  (A.3)  

then assign the parameters as follows 

                                                   00 =u         1=nu  

                                       
d

QQ
uu

kk
kk

1
1

−
−

−
+=       1 , 1, −= nk L                               (A.4)   
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The chord length is a widely used method, and it produces a good approximation for uniform 

parameterization. 

The centripetal method is a newer method. Let 

                                                       ∑
=

−−=
n

k

kk QQd
1

1                                                 (A.5) 

The parameters of the centripetal method are defined as 

00 =u         1=nu  

                                     
d

QQ
uu

kk
kk

1
1

−
−

−
+=        1 , 1, −= nk L                             (A.6)   

The centripetal method gives a better result when the spacing of the data points varies.  

A.3  Global Interpolation 

Global interpolation is a process of calculating a B-spline curve that will interpolate a set 

of data points }{ kQ , nk  , 1, ,0 L= , at the designated parametric values }{ ku  [2, 3, 44]. The 

)1()1( +×+ nn  system of linear equations to be solved is 

                                     nkcuNufQ
n

i

ikdikk ,,0     )()(
0

, L=⋅== ∑
=

                             (A.7) 

The )1( +m  knots are calculated using the following technique of averaging  

00 === duu L           1===− mdm uu L  

                                         ∑
−+

=
+ =

1
1

dj

ji

idj u
d

u            dnij −= ,,L                                  (A.8) 

Equation A.7 can be rewritten in matrix notation as follows 
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which can be solved using LU decomposition. 
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